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Abstract: S-allylcysteine (SAC), a major thioallyl compound contained in mature garlic extract (MGE),
is known to be a neuroactive compound. This study was designed to investigate the effects of
SAC on primary cultured hippocampal neurons and cognitively impaired senescence-accelerated
mice prone 10 (SAMP10). Treatment of these neurons with MGE or SAC significantly increased the
total neurite length and number of dendrites. SAMP10 mice fed MGE or SAC showed a significant
improvement in memory dysfunction in pharmacological behavioral analyses. The decrease of
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate
(NMDA) receptor, and phosphorylated α-calcium/calmodulin-dependent protein kinase II (CaMKII)
in the hippocampal tissue of SAMP10 mice fed MGE or SAC was significantly suppressed, especially
in the MGE-fed group. These findings suggest that SAC positively contributes to learning and
memory formation, having a beneficial effect on brain function. In addition, multiple components
(aside from SAC) contained in MGE could be useful for improving cognitive function by acting as
neurotrophic factors.

Keywords: S-allylcysteine (SAC); mature garlic extract (MGE); hippocampal neuron; senescence-accelerated
mice; memory; cognitive function

1. Introduction

In recent years, the consumption of certain foods by aged individuals for the purpose of promoting
and maintaining brain function has attracted much attention, particularly in terms of improving the
accuracy of memory and judgment. Above all, garlic (Allium sativum L. Liliaceae) has been widely used
as a food and medicine for thousands of years [1,2]. Garlic contains S-allylcysteine (SAC), which is
considered to be useful for memory improvement. Mature garlic extract (MGE) made from garlic that
has been aged at a low temperature contains more SAC than aged-garlic extract (AGE) made from
common black garlic. In addition, MGE contains cycloalliin, which is useful for increasing fibrinolytic
activity and preventing hyperlipidemia [3,4], and γ-glutamyl-S-allylcysteine, which contributes to
hypotensive effects through angiotensin converting enzyme inhibitory and vasodilating activities [5,6].

SAC, which is an organosulfur compound in garlic, has a high bioavailability of 98.2%
(rat, 50 mg/kg, p.o.) [7]. Therefore, by reaching the systemic circulation and passing through the
blood–brain barrier [8], SAC can have various effects on the brain. SAC has been confirmed to cause a
significant increase in the formation of branching per axon as well as a survival-promoting effect on
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primary cultured hippocampal neurons [9,10]. Since such neurotrophic factors improve learning and
reduce memory impairment [11], SAC is considered to be a beneficial component for brain function.
Also, SAC has been shown to have a selectively neuroprotective effect by reducing cell death caused
by endoplasmic reticulum stress induced by amyloid β (Aβ) and tunicamycin [12–14]. In addition,
it has been found that SAC inhibits Aβ fibrillation, destabilizes preformed Aβ fibrils [15], and reduces
hyperphosphorylation of the tau protein, which induces neurofibrillary tangles and Aβ deposition [16].
Therefore, SAC is expected to be applied for the treatment of neurodegenerative diseases such as
Alzheimer’s and Parkinson’s diseases.

Senescence-accelerated mice (SAM) have been established as a model for studying human
aging and age-related disorders. There are several senescence-prone inbred strains (SAMP) and
senescence-resistant inbred strains (SAMR). SAMP mice have a short lifespan and exhibit many
characteristic age-dependent pathologies at an early age [17,18]. Among these strains, the SAMP10
mouse strain was established by Shimada and colleagues [19,20]. The age-related morphological
changes seen in the SAMP10 brain, such as the retraction of dendritic arbors, a decrease in the density
of the dendritic spine [21], a loss of synapses [22], and impairment in learning and memory [23–26],
are more consistent with observations on the aging human brain than those on the brain of mice
with Alzheimer’s disease. Several behavioral tests of brain function using SAMP10 and SAMR1 mice
have been widely used to study the effects of food materials on the prevention of brain senescence,
and materials such as garlic [27,28] and green tea [29–31] have been found to improve learning memory
impairment and suppress brain atrophy.

Regarding the physiological function of SAC and AGE components, the research focus has been
on the antioxidative effects while the neurotrophic factor is poorly understood. Although there
have been many reports that AGE and SAC have useful effects on neuronal morphological changes
and learning behavior [9,10,27,28], the detailed mechanism of how SAC affects memory-related
receptors, such as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and
the N-methyl-d-aspartate (NMDA) receptor, in the hippocampus is not clear. In addition, few reports
have examined the effects of long-term intake of these substances on learning and memory. In this
study, we examined the efficacy of MGE, but not AGE, and SAC for increasing the total neurite length
and the number of dendrites in primary cultured embryonic mouse hippocampal neurons. Next,
we analyzed learning and memory-formation-related behavioral experiments and protein expression
levels in the hippocampal tissue of SAMP10 mice that were continuously fed a diet containing MGE or
SAC for a period of 10 months (from ages 2 to 11 months). Our findings demonstrate strong evidence
that MGE and SAC possess potential neurotrophic properties and also preserve learning and memory
functions to maintain young brain function.

2. Materials and Methods

2.1. Animals and Preparation of Matured Garlic Extract

C57BL/6J mice were obtained from Charles River Laboratory Japan (Yokohama, Japan).
Male SAMP10/TaSlc (SAMP10) and male SAMR1/TaSlc (SAMR1) mice were obtained from Japan

SLC (Shizuoka, Japan) at 4 weeks of age. Mice were housed under a standard 12 h light/dark cycle
(light phase 9:00–21:00) at a constant temperature of 22 ± 1 ◦C with food and water provided ad libitum
throughout the experiments.

SAMP10 and SAMR1 mice were fed a diet (CE-2; Clea, Tokyo, Japan) containing MGE or SAC
(Tokyo Kasei, Tokyo, Japan) starting at 2 months of age. MGE was manufactured by extracting the
water-soluble fraction of garlic supplied by Takko Kawamura Agri Service Inc. (Aomori, Japan).

In this study, a diet with a low concentration of MGE, i.e., 0.20% of the diet (w/w) (L-MGE)
and one with a high concentration of MGE, i.e., 1.0% of the diet (w/w) (H-MGE) were prepared.
In addition, a diet containing the same amount of SAC as in H-MGE was prepared. In a previous
report, a diet containing 2% AGE or 0.002–0.004% SAC was used [27,32]. Based on that, we set
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the amount of SAC to 0.002% (=20 mg/kg diet) and the amount of H-MGE to 1.0%. L-MGE was
set to 0.2% to investigate the concentration-dependent effect. Since mice consume 150 g of diet/kg
(body weight)/day [33], L- and H-MGE were consumed at 0.30 g and 1.5 g MGE/kg (body weight)/day,
respectively. As a result of quantifying the amount of SAC by high performance liquid chromatography
(HPLC) (Shimadzu, Tokyo, Japan), 1.0 g of MGE contained 2.0 mg of SAC. Therefore, the L-MGE- and
H-MGE-fed groups consumed 0.60 and 3.0 mg of SAC per day, respectively.

2.2. Cell Culture

Primary cultured hippocampal neurons were prepared from C57BL/6J mice on gestational
days 15–16, as described previously with minor modifications [34]. The embryonic hippocampus
was digested with 0.25% trypsin and 0.1 mg/mL DNase for 10 min at 37 ◦C and then gently
pipetted to mechanically dissociate the cells. Neurons were seeded on poly-d-lysine-coated cell
disks (Sumitomo Bakelite, Tokyo, Japan) in neural basal medium containing B-27 and GlutaMax
supplement (Thermo Fisher Scientific, Waltham, MA, USA), and the cultures were started on day 0
in vitro (DIV 0). Culture medium was exchanged for fresh medium every 3–4 days. MGE or SAC was
added to the culture medium along with 1 µM cytosine β-d-arabinofuranoside on DIV 2. At DIV 4
(48 h) and 5 (72 h), the total neurite length and number of dendrites treated with MGE or SAC were
measured by immunofluorescence staining.

2.3. Immunofluorescence and Image Quantification

Hippocampal neurons on poly-d-lysine-coated cell disks were fixed with formaldehyde for 10 min
and then incubated with blocking buffer (PBS with 10% goat serum and 1% BSA) for 1 h at room
temperature on DIV 4 and 5. Anti-MAP2 antibody (dendrite marker, Abcam, Cambridge, UK) was
added to the disks at 1:1000 dilution in Can Get Signal Solution B (Toyobo, Osaka, Japan), which were
then incubated for 1 h at room temperature. After 2 washings with TBS-T solution, each for 10 min,
goat-rabbit IgG antibody coupled to Alexa fluor 568 (Thermo Fisher Scientific, Waltham, MA, USA)
at 1:200 dilution in Can Get Signal Solution B was added, and the cells were incubated for 30 min at
room temperature under shaded conditions. After 3 washings with TBS-T solution for 10 min each
time, nuclear DNA was stained with Hoechst 33342 (Dojindo, Kumamoto, Japan) at 1:1000 dilution in
distilled water. After another 3 washings for 10 min each time, the cell disks were mounted on glass
slides. Images were acquired with a fluorescence microscope (Olympus, Tokyo, Japan). Images of
MAP2-positive cells obtained by immunofluorescence staining were transformed using an IN Cell
Translator (GE Healthcare, Buckinghamshire, UK), and quantification of total neurite length and
number of dendrites per neuron was performed with an IN Cell Analyzer Workstation (GE Healthcare,
Buckinghamshire, UK).

2.4. Behavioral Experiments

SAMP10 mice were randomly divided into four groups (n = 18 mice per group). The mice were
fed a CE-2 diet containing MGE or SAC for a period of 10 months (from ages 2 to 11 months). One
of the SAMP10 groups and the SAMR1 group (n = 12) were fed the CE-2 diet without MGE or SAC
and acted as control mice for the behavioral experiments. Six months after the start of breeding,
additional 4-week-old SAMP10 mice were purchased as Young-SAMP10 mice to allow us to observe
age-related declines in brain function. Learning and memory ability were measured by performing
the Y-maze, step-through passive avoidance, and novel object recognition tests on animals at 11–12
(Old-SAMP10 and Old-SAMR1) or 5–6 (Young-SAMP10) months of age. The mice were sacrificed at
the age of 12 (Old-SAMP10 and Old-SAMR1) or 6 (Young-SAMP10) months, and tests were carried out
to obtain the hippocampal tissue. The samples were immediately frozen at −80 ◦C. All protocols for
animal procedures were approved by the University of Shizuoka Laboratory Animal Care Advisory
Committee (approval No. 166197) in accordance with the Internal Regulations on Animal Experiments
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at the University of Shizuoka, which are based on the Law for the Humane Treatment and Management
of Animals (Law No. 105, 1 October 1973).

2.4.1. Working Memory

Spontaneous alternations and exploratory behavior in the Y-maze were used as hippocampal-based
tasks to assess working memory. Immediate working memory was evaluated by recording spontaneous
alternations during a single session in the Y-maze [35,36]. The Y-maze apparatus was made of black
plastic with three arms (40 cm × 15 cm × 35 cm), each extending at 120◦ from a central platform.
Each mouse was placed on the end of one arm and allowed to move freely through the maze during an
8-min session, and the number of arm entries was counted. Each series of arm entries was visually
recorded, and an arm entry was defined as when the hind paws of the mouse were completely within
the arm. The number of alternations was defined as the number of combinations (i.e., abc, bca, triplets)
of entrances into the three different arms in succession and was considered to reflect the working
memory capacity. The percentage of spontaneous alternations (%) was calculated from the following
formula and used as an index of short-term memory:

Alternation (%) = (number of alternations)/(total arm entries − 2) × 100.

2.4.2. Memory Acquisition Test and Retention Test

A step-through passive avoidance task was carried out according to the protocol method reported
earlier [29]. This test was based on the fact that mice prefer dark places. The apparatus was connected to
a light chamber and a dark chamber with a door between them. The mice in the test were initially placed
in the light chamber. When a mouse entered the dark chamber, the door was closed, and an electric
foot-shock was delivered at 0.05 mA for 1 s (Muromachi Kikai Co. Ltd., Tokyo, Japan). The mouse
was then gently removed and replaced in the bright room. One minute later, the door was opened,
and the time taken for the mouse to enter the dark chamber was measured. The trial was terminated
when the mouse remained in the light chamber for 300 s without entering the dark room, and this
was repeated five times until the mouse had satisfied the acquisition criterion. In such multiple-trial
passive avoidance tests, the number of trials required for the mouse to satisfy the acquisition criterion
is usually regarded as an index of memory acquisition. The total time spent in the light chamber
during each trial was deducted from 300 s and was considered the time needed for learning. The time
taken for each trial was totaled—the shorter the learning time, the higher the learning ability.

One month later, the mice were assessed again to see whether they remained in the light chamber.
The number of mice remaining in the light chamber for 300 s was used as the acquisition criterion for
long-term memory.

2.4.3. Novel Object Recognition Test

This task was performed on days 1–5 according to a previously described protocol with some
modifications [37,38]. The novel object recognition test was based on the characteristic of a preference for
a novel object. The task was divided into three different sessions (habituation, training, and retention).
In the habituation session, each mouse was individually placed in an open box (30 cm × 30 cm × 35 cm
height) without objects for three consecutive days and allowed to explore for 10 min each day. Secondly,
a training session was performed on the day 4. Two novel objects (X and Y) were placed in the open
box, and the mice were allowed to explore the objects freely for 10 min. The total time spent exploring
an object, which was calculated as the total time that a mouse directed their nose toward an object
at a distance of <1 cm and/or touched the object with their nose, was assessed manually for 10 min
using two stopwatches. Thirdly, a retention session was performed on day 5. The mice were allowed
to explore an open field for 10 min in the presence of two objects of different shapes and colors,
i.e., the familiar object X and a novel object, Z.
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The time spent exploring each object was recorded as before. Then, the exploration time for each
object in the training (X or Y) and retention (X or Z) sessions was evaluated against the total exploring
time. Cognitive function was evaluated by exploratory preferences obtained from the time ratio for
each object, e.g., X or Y/(X + Y) × 100 (%) in the training session, and X or Z/(X + Z) × 100 (%) in the
retention session. An exploratory preference index of 50% corresponds to chance, and a significantly
higher exploratory preference index reflects good recognition memory.

2.4.4. Western Immunoblotting

At the end of the behavioral experiments, the hippocampus was removed, placed on an ice-cold
plate, immediately frozen, and stored −80 ◦C. Hippocampus protein extracts were obtained by
homogenization of the hippocampal tissue in Passive Lysis Buffer (Promega, Madison, WI, USA)
supplemented with proteinase and phosphatase inhibitors. The homogenate was centrifuged at 13,000× g
for 20 min to obtain a supernatant, which was then subjected to protein estimation (Bradford assay),
and a defined volume of the supernatant containing a fixed amount of protein was analyzed by
Western immunoblotting.

For preparation of the tissue lysates for Western blotting, a Laemmli buffer (Bio-Rad Laboratories,
Hercules, CA, USA) was added. Prior to electrophoresis, samples were denatured at 95 ◦C for 6 min.
An equal amount of total protein (20 µg) from tissue homogenate was loaded onto a 7.5% mini-gel
(Mini-PROTEAN TGX Precast Gel, Bio-Rad Laboratories, Hercules, CA, USA) along with a molecular
weight marker (Bio-Rad Laboratories, Hercules, CA, USA). Protein bands on the separating gel were
transferred to a polyvinylidene difluoride membrane (Trans-Blot Turbo Mini PVDF, 0.2 µm, Bio-Rad
Laboratories, Hercules, CA, USA) in accordance with the manufacturer’s instructions. The membranes
were then blocked for 1 h in blocking buffer (PVDF Blocking Reagent for Can Get Signal, Toyobo, Osaka,
Japan) at room temperature and incubated in solution 1 (Can Get Signal Solution, Immunoreaction
Enhancer Solution for primary antibody, Toyobo, Osaka, Japan) and the primary antibodies AMPA
receptor GluR1 subunit (anti-GluR1; molecular weight (MW), 102 kDa; 1:1000 dilution; Abcam,
Cambridge, UK), anti-GluR1 phosphorylated at serine 831 (anti-pGluR1; MW, 106 kDa; 1:1000 dilution;
Abcam, Cambridge, UK), NMDA receptor 2B subunit (anti-NR2B; MW, 166 kDa; 1:1000 dilution;
Abcam, Cambridge, UK), anti-NR2B phosphorylated at tyrosine 1472 (anti-pNR2B; MW, 180 kDa;
1:1000 dilution; Merck, Darmstadt, Germany), and anti-α-calcium/calmodulin-dependent protein
kinase II phosphorylated at threonine 286 (anti-pCaMKII; MW, 50 kDa; 1:1000 dilution; Cell Signaling
Technology, Danvers, MA, USA) overnight at 4 ◦C. Membranes were washed with Tris-buffered
saline with 0.1% Tween-20 (TBS-T) and then incubated in solution 2 (Can Get Signal Solution,
Immunoreaction Enhancer Solution for secondary antibody, Toyobo, Osaka, Japan) and the secondary
antibody (HRP-Linked Anti-IgG, 1:10,000 dilution, GE Healthcare, Buckinghamshire, UK) for 1 h at
room temperature. After the membrane had been washed with TBS-T, the relative amounts of bound
antibodies were detected with a chemiluminescent substrate (ECL, GE Healthcare, Buckinghamshire,
UK). The specific bands were scanned and quantified with ChemiDoc XRS+ and ImageLab software
(Bio-Rad Laboratories, Hercules, CA, USA).

2.5. Flowchart

The summarized method is provided in the following flowchart (Figure 1).
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Figure 1. Flowchart of the study.

2.6. Statistical Analyses

The results were analyzed using JMP 8 (SAS Institute Inc., Cary, NC, USA). The data were collected
from at least three independent experiments and are expressed as the mean ± standard error of the
mean (SEM). For all results, assuming a Gaussian distribution, data were analyzed by one-way analysis
of variance (ANOVA). To perform multiple comparisons, Dunnett’s test or the Tukey–Kramer test were
used for post-hoc analysis after ANOVA. p < 0.05 was considered statistically significant. The levels of
statistical significance are indicated as follows: *; p < 0.05, **; p < 0.01.

3. Results

3.1. Effects of MGE on the Total Neurite Length and Number of Dendrites in Primary Cultured
Hippocampal Neurons

We first examined whether MGE and SAC induce increases in the total neurite length and number
of dendrites in hippocampal neurons. The total neurite length and number of dendrites per neuron at
0 h (DIV2) were 212.5 ± 6.08 µm (Table 1) and 3.47 ± 0.127 (Table 2), respectively. A typical image of a
MAP2-positive neuron treated with 50 µg of MGE is shown in Figure 2. Primary cultured hippocampal
neurons treated with MGE at 48 and 72 h showed significant increases in the total neurite length and
number of dendrites, and the neurons increased in a concentration-dependent manner at 48 h. In the
case of treating with SAC, the neurite length and number of dendrites increased significantly; however,
no concentration dependency was found. The concentration of SAC that showed the maximum effect
was 10 ng/mL at 72 h. These results suggest that SAC and the multiple other components contained in
MGE have the ability to synergistically enhance the effect of early neurite outgrowth.

Table 1. Effects of increasing the total neurite length with mature garlic extract (MGE) and S-allylcysteine
(SAC) on the morphology of primary cultured hippocampal neurons.

Concentration
48 h 72 h

Total Neurite Length, µm Total Neurite Length, µm

MGE (µg/mL)

0 278.9 ± 7.24 362.9 ± 8.60
5 306.7 ± 9.04 * 419.3 ± 9.53 **
50 323.5 ± 8.77 ** 430.7 ± 9.40 **

500 392.8 ± 8.18 ** 435.2 ± 9.30 **

SAC (ng/mL)

0 259.1 ± 6.85 342.9 ± 8.15
10 300.3 ± 8.04 ** 445.8 ± 12.9 **

100 294.8 ± 7.08 ** 433.5 ± 11.3 **
1000 303.8 ± 7.56 ** 398.1 ± 7.56 **

0 h: 212.5 ± 6.08 µm. The data are presented as the mean ± SEM (n = 102–144 from 3–5 independent experiments).
*; p < 0.05, **; p < 0.01 compared with the concentration at 0 h at each time point (one-way ANOVA and Dunnett’s
post-hoc test).
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Table 2. Effects of increasing the number of dendrites with MGE and SAC on the morphology of
primary cultured hippocampal neurons.

Concentration
48 h 72 h

Number of Dendrites Number of Dendrites

MGE (µg/mL)

0 5.29 ± 0.137 5.29 ± 0.186
5 5.86 ± 0.176 * 7.16 ± 0.217 **
50 6.06 ± 0.166 ** 6.88 ± 0.196 **

500 6.81 ± 0.207 ** 7.92 ± 0.226 **

SAC (ng/mL)

0 5.34 ± 0.190 5.32 ± 0.148
10 6.19 ± 0.166 ** 7.35 ± 0.242 **

100 6.20 ± 0.163 ** 6.76 ± 0.203 **
1000 5.88 ± 0.133 6.46 ± 0.180 **

0 h: 3.47 ± 0.127. The data are presented as the mean ± SEM (n = 102–144 from 3–5 independent experiments).
*; p < 0.05, **; p < 0.01 compared with the concentration at 0 h at each time point (one-way ANOVA and Dunnett’s
post-hoc test).

Figure 2. Images of MAP2-positive primary cultured hippocampal neurons treated with MGE.
The neurons were treated with 0 (control) or 50 µg of MGE for 48 (day in vitro (DIV) 4) or 72 h (DIV 5).
These images of MAP2-positive cells obtained by immunofluorescence staining were subjected to image
conversion using the IN Cell Translator. Bars = 100 µm.

3.2. Y-Maze Test

The Y-maze test was performed to investigate the effects of MGE and SAC on the improvement
of the spatial working memory, which is a kind of short-term memory. As shown in Figure 3A,
old SAMP10 mice showed significantly reduced spontaneous alternations compared with old SAMR1
and young SAMP10 mice (F (2, 33) = 17.33, p = 7.17 × 10−6). In old SAMP10 mice, the number of
alternations in the MGE- and SAC-fed groups significantly increased compared with that of the control
group (F (3, 57) = 23.99, p = 3.62 × 10−10; Figure 3B). As shown in Figure 3C, young SAMP10 mice
showed a high value for total arm entries (F (2, 33) = 40.35, p = 1.37 × 10−9), although there was no
significant difference in the total arm entries in old SAMR1 and old SAMP10 mice. On the other hand,
there was no significant difference in the total arm entries among the SAMP10 groups (F (3, 57) = 5.868,
p = 1.46 × 10−3; Figure 3D). These results suggest that the neural circuit for memory formation in old
SAMP10 mice is stimulated by MGE and SAC intake and has a positive effect on recovery from the
decline in short-term memory ability. In addition, only young SAMP10 mice showed a high rate of
spontaneous locomotor activity, which was calculated from the number of arm entries.
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Figure 3. Effects of MGE and SAC on working memory in senescence-accelerated mice (SAM).
The behavior of SAMP10 (5 and 11 months old) and SAMR1 (11 months old) was observed for 8 min in
a Y-maze. The ratios of alternation (%, (A,B)) and total arm entries (C,D) were measured. (B,D) show
the results for 11-month-old SAMP10. The L- and H-MGE groups consumed 0.20% and 1.0% of MGE
in the diet (w/w), respectively. The SAC and H-MGE groups consumed the same amount of SAC. Each
value represents the mean ± SEM (n = 8–17). a,b; p < 0.05 (One-way ANOVA and Tukey–Kramer
post-hoc test), **; p < 0.01 compared with the control group (One-way ANOVA and Dunnett’s post-hoc
test). SAMP: senescence-prone inbred strains; SAMR: senescence-resistant inbred strains.

3.3. Step-Through Passive Avoidance Test

The time taken to learn not to enter the dark chamber was recorded using a step-through passive
avoidance task, in which a shorter learning time implied a higher learning ability. As shown in
Figure 4A, the learning time of old SAMP10 mice fed a normal diet was significantly longer than that
of young SAMP10 and old SAMR1 mice (F (2, 33) = 18.38, p = 4.32 × 10−6). In the old SAMP10 mice
fed MGE or SAC, the learning times were significantly shortened (F (3, 56) = 25.99, p = 1.15 × 10−10;
Figure 4B), equivalent to the learning ability of young SAMP10 mice. These results suggest that MGE
and SAC contribute to learning acquirement and efficiency in old SAMP10 mice.

Figure 4. Effects of MGE and SAC on learning in SAM mice. (A) The learning time of SAMP10
(5 and 11 months old) and SAMR1 (11 months old) was examined using a step-through test system.
The time needed for acquisition (A,B) of the avoidance response was measured. (B) Results for
11-month-old SAMP10 mice. The L- and H-MGE groups consumed 0.20% and 1.0% of MGE in the
diet (w/w), respectively. The SAC and H-MGE groups consumed the same amount of SAC. Each value
represents the mean ± SEM (n = 8–16). a,b; p < 0.05 (One-way ANOVA and Tukey–Kramer post-hoc
test), **; p < 0.01 compared with the control group (One-way ANOVA and Dunnett’s post-hoc test).
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The memory retention test showing the avoidance response was assessed at 1 month after the
acquisition test. The number of mice that stayed in the light chamber for at least 300 s was only
measured once. As shown in Table 3, all of the young SAMP10 mice succeeded at remembering the
avoidance response (8/8), whereas only 46.7% (7/15) of the old SAMP10 mice remained in the light
chamber. An increased number of old SAMP10 mice in the MGE- or SAC-fed groups satisfied the
acquisition criteria, exceeding the success rate of the old SAMR1 mice (Table 4). These findings suggest
that long-term spatial memory retention is possibly due to intake of MGE and SAC.

Table 3. Effects of MGE and SAC on the memory of the avoidance response in the retention test for
SAMP10 (6 and 12 months old) and SAMR1 (12 months old) mice.

Mice Age Number of Animals Success (Left) Failure (Right) Memory Retention (%)

SAMP10 6 M (young) 8 0 100
SAMP10 12 M (old) 7 8 46.7
SAMR1 12 M (old) 7 4 63.6

Table 4. Effects of MGE and SAC on the memory of the avoidance response in the retention test for
12-month-old SAMP10 mice.

Mice Diet Number of Animals Success (Left) Failure (Right) Memory Retention (%)

SAMP10 Control 7 8 46.7
SAMP10 L-MGE 9 4 69.2
SAMP10 H-MGE 10 3 76.9
SAMP10 SAC 11 4 73.3

3.4. Novel Object Recognition Test

The non-spatial memory ability was also evaluated in the novel object recognition test. During
the training session, there was no biased exploratory preference in all groups (Figure 5A,B). When the
retention session was performed 24 h after the training session, old SAMP10 mice fed a normal diet did
not change their level of exploratory preference, whereas young SAMP10 and SAMR1 mice showed
significantly increased preference for novel object C (F(2, 31) = 9.299, p = 6.86 × 10−4; Figure 5C).
SAMP10 mice in the MGE- and SAC-fed groups also showed a significantly increased exploratory
preference (F (3, 52) = 6.788, p = 6.00 × 10−4; Figure 5D), indicating that a diet containing MGE
and SAC supports non-spatial memory formation in SAMP10 mice. These results suggest that the
diets containing these ingredients reduced age-related memory decline and enhanced long-term
non-spatial memory retention. In addition, the changes in exploratory preference did not show a
concentration-dependent characteristic in the MGE-fed group.
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Figure 5. Effects of MGE and SAC on non-spatial memory in SAM mice. The exploratory preference
(%) of SAMP10 (6 and 12 months old) and SAMR1 (12 months old) was observed in the novel object
recognition test. The time spent exploring two objects was recorded for 10 min in the training sessions
(A,B) and retention sessions (C,D). (B,D) show the results for 12-month-old SAMP10 mice. The L- and
H-MGE groups consumed 0.20% and 1.0% of MGE in the diet (w/w), respectively. The SAC and H-MGE
groups consumed the same amount of SAC. Each value is presented as the mean ± SEM (n = 8–15).
a,b; p < 0.05 (One-way ANOVA and Tukey–Kramer post-hoc test), *; p < 0.05, **; p < 0.01 compared
with the control (One-way ANOVA and Dunnett’s post-hoc test).

3.5. Western Immunoblotting

Several studies have indicated that tyrosine phosphorylation of NR2B and serine phosphorylation
of GluR1 can regulate the activity of NMDA and AMPA receptors in neurons and that these
phosphorylation reactions are involved in learning and memory formation [39,40]. It is also well known
that CaMKII-dependent signaling in neurons is involved in survival, brain development, learning,
and memory formation [40–44]. Therefore, the relationship between protein expression and learning
and memory formation was investigated using hippocampal tissue for Western immunoblotting
after completion of the behavioral experiments (Figure 6A). The protein expression levels of learning
and memory-related receptors and the phosphorylation levels (GluR1, pGluR1, NR2B, pNR2B,
and pCaMKII) were reduced in old SAMP10 mice compared with the expression and phosphorylation
levels in young SAMP10 mice (Figure 6B). Old SAMP10 mice fed H-MGE showed significant suppression
of the decrease in the expression levels of all proteins (Figure 6C). On the other hand, the SAC-fed
group only showed suppression of the decrease in the expression of GluR1 and pCaMKII, although no
concentration-dependent actions of MGE and no correlation between the H-MGE and SAC groups
were observed. These results suggest that SAC and the multiple other components contained in MGE
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have the ability to increase protein expression, suggesting that they work to maintain and enhance
learning and memory functions.

Figure 6. Effects of MGE and SAC on hippocampal proteins in SAMP10 mice. The molecular mechanism
of memory was investigated by Western immunoblotting of hippocampal tissue after completion
of the behavioral experiments (A). Protein levels for 6- and 12-months-old SAMP10 mice (B) and
12-months-old SAMP10 mice (C) are shown. Each value is presented as the mean ± SEM (n = 4).
†; p < 0.05, † †; p < 0.01 (Student’s t-test), *; p < 0.05, **; p < 0.01 compared with the control group
(One-way ANOVA and Dunnett’s post-hoc test).

4. Discussion

The essence of the brain is the processing of external information and subsequent plastic regulation
of neuronal function. Neurons form networks through synaptic structures and communicate with
each other through neurotransmitters and synaptic receptors [45]. In this study, treatment of primary
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cultured hippocampal neurons with MGE or SAC significantly increased the total neurite length
and number of dendrites. SAC showed a certain neurotrophic effect and further activated neurons
through a synergistic effect with multiple other components contained in MGE. We suggest that the
neurotrophic effects of MGE and SAC are strongly involved in the enhancement of transmission
efficiency and information-processing ability by neural network formation. Furthermore, we propose
that the increase in the number of dendrites plays a role in the ability of the brain to receive a lot of
information. Thus, although SAC showed the maximum effect on the neurons at low concentrations,
these data (Tables 1 and 2) alone do not suggest that it has a useful effect on learning and memory.

Therefore, pharmacological behavioral tests were performed to investigate the inhibitory effects
on memory dysfunction of feeding a diet containing MGE or SAC to SAMP10 and SAMR1 mice.
The Y-maze is considered to be a hippocampus-dependent memory test, since it evaluates spatial
working memory, an index of short-term memory, through assessing the continuous selection of
arms [46,47]. In addition, it has the advantage of providing a measure of locomotor activity of mice by
counting the number of arm entries [48]. The step-through passive avoidance test is closely related
to the amygdala-dependent memory, since it is used as an index of long-term memory to evaluate
avoidance behavior against an aversive stimulus (electric foot-shock) that has been experienced
once [49]. In addition, the novel object recognition test evaluates long-term memory through the
recognition of unique non-spatial information of novel objects by utilizing a characteristic of rodents,
i.e., the preference for novelty. In a previous study, this test was related to olfactory-cortex-dependent
memory, which is considered to be one of the major pathways of neural information related to episodic
memory [50]. It has been suggested that the hippocampus reactivates specific memory representations
of the olfactory cortex and amygdala during memory retrieval [51], and, in particular, the amygdala
and hippocampus collect information from related cortical areas and are deeply involved in the
processes of cognition, memory formation, and emotional expression [52]. In all pharmacological
behavioral tests performed, SAMP10 mice fed MGE or SAC showed significantly reduced learning
and memory dysfunction and significant improvements in learning and short- and long-term memory
formation. In addition, since the locomotor activity obtained from the number of arm entries did
not differ significantly in any group, there were no differences in the amount of exercise, exploratory
behavior, or motivation. Short-term memory formation requires the activity of existing ionotropic
receptors and kinases in neuronal cells, and memory consolidation from short- to long-term memory
requires the induction of de novo protein synthesis in the brain after learning [53,54]. Therefore, it is
suggested that, by improving the above-mentioned process, MGE and SAC enhance learning activity
and memory consolidation.

It is known that synaptic transmission efficiency is not constant and changes following exposure to
a stimulus, a phenomenon called synaptic plasticity [55]. The long-term memory circuit is formed by the
induction of long-term potentiation (LTP), which causes a long-term increase in transmission efficiency
at neuronal synapses and requires activation of NMDA-type receptors and induction of AMPA-type
receptor expression [38,39,56,57]. The AMPA-type receptor has four subunits, GluR1–4 [58], and the
regulation of AMPA-type receptor expression is one of the important mechanisms underlying synaptic
plasticity. Similarly, the NMDA-type receptor is composed of NR1 and NR2 subunits, and the NR2
subunit has four subtypes, NR2A–2D. LTP is induced by the activation of CaMKII caused by Ca2+ influx
from NMDA receptors. Activated CaMKII phosphorylates GluR1 at serine 831, increases the channel
conductance states, and is involved in LTP induction [43,59]. LTP is thought to be induced by an increase
in an excitatory postsynaptic current (EPSC) and synaptic plasticity when phosphorylated GluR1 is
recruited onto the postsynaptic membrane to increase the synaptic transmission efficiency [38,39,56,60].
Thus, the AMPA-type receptor containing GluR1 must be expressed on synaptic membranes for memory
formation, and the activation of the NMDA-type receptor that stimulates them is essential for this
process. However, there have been numerous reports of decreases in AMPA- and NMDA-type receptor
expressions in the hippocampus of SAMP10 and aged rodents, suggesting an association with an
age-related decline in learning ability [61–66]. It has also been reported that one of the earliest biological
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manifestations of Alzheimer’s dementia is a decrease in AMPA-type receptors and impaired synaptic
plasticity [67,68], and a reduction of autophosphorylation of CaMKII at threonine 286 in the frontal
cortex and hippocampus of Alzheimer’s disease brains is a key contributor to synaptic dysfunction,
neurodegeneration, and memory impairment [44,69]. We analyzed the hippocampal proteins of
SAMP10 after the behavioral experiments and found that the expression levels of GluR1, NR2B,
and phosphorylated CaMKII, which are involved in learning and memory abilities, were significantly
increased in the MGE-fed group of SAMP10 mice. On the other hand, the SAC-fed group of SAMP10
mice showed an increase in the expression of proteins, except for NR2B. Although there is some room
for memory consideration regarding the involvement of transcription factors such as the cyclic AMP
response element binding protein (CREB), which is essential for the process of memory consolidation,
the results of behavioral experiments and memory-related protein expression in this study suggest the
importance of GluR1 and phosphorylated CaMKII in maintaining learning and memory functions.
In addition, when memory is consolidated, synaptic changes occur in excitatory neurons that use
glutamate as a neurotransmitter. AMPA- and NMDA- type glutamate receptors, which play important
roles in the memory processes that occur in the postsynaptic membrane, are thought to mediate some
of these changes [60,70].

Although the detailed mechanism of how SAC affects learning memory is not clear, we speculate
that SAC might produce useful changes on the action of AMPA- and NMDA-type receptors in the
postsynaptic membranes and on the mechanism of memory formation. MGE was also found to
contribute to equal or better maintenance of postsynaptic function. As with cultured hippocampal
neurons, this phenomenon is considered to be a synergistic effect of the multiple other components
contained in MGE. Our findings indicate that MGE and SAC are possibly involved in the regulation of
synaptic plasticity through mechanisms that promote hippocampal neuronal differentiation, regulate
the synaptic microenvironment, and suppress a decrease in memory-related proteins.

5. Conclusions

We suggest that MGE and SAC positively contribute to learning, memory formation, and the
maintenance of young brain function. The results of this study were obtained using SAMP10 mice,
which showed morphological changes similar to those in humans with mild memory and cognitive
impairments during aging. Thus, MGE and SAC could be applied in foods to improve the accuracy of
memory and judgment.
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