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Abstract: Group rearing is a common housing condition, but group-housed older mice show increased
adrenal hypertrophy, a marker of stress. However, the ingestion of theanine, an amino acid unique to
tea leaves, suppressed stress. We aimed to elucidate the mechanism of theanine’s stress-reducing
effects using group-reared older mice. The expression of repressor element 1 silencing transcription
factor (REST), which represses excitability-related genes, was increased in the hippocampus of group-
reared older mice, whereas the expression of neuronal PAS domain protein 4 (Npas4), which is
involved in the regulation of excitation and inhibition in the brain, was lower in the hippocampus of
older group-reared mice than in same-aged two-to-a-house mice. That is, the expression patterns of
REST and Npas4 were found to be just inversely correlated. On the other hand, the expression levels
of the glucocorticoid receptor and DNA methyltransferase, which suppress Npas4 transcription,
were higher in the older group-housed mice. In mice fed theanine, the stress response was reduced
and Npas4 expression tended to be increased. These results suggest that Npas4 expression was
suppressed by the increased expression of REST and Npas4 downregulators in the group-fed older
mice, but that theanine avoids the decrease in Npas4 expression by suppressing the expression of
Npas4 transcriptional repressors.

Keywords: DNA methyltransferase; glucocorticoid receptor; group housing; IL-1β; Npas4; REST;
stress; theanine

1. Introduction

L-theanine (γ-glutamylethylamine) is a non-protein amino acid that is rarely found in
plants other than tea (Camellia sinensis) and is the major amino acid in Japanese green tea,
which is a widely consumed beverage associated with human health [1]. Since theanine is
structurally similar to glutamic acid and is taken into the brain through the blood–brain
barrier [2], its function in the brain has been studied. For example, it has been reported that
theanine has a relaxing effect, as alpha waves have been observed to significantly increase
in the brain after its ingestion [3]. In addition, animal experiments and clinical studies in
humans have shown that theanine offers excellent stress-relieving effects [4–9]. Theanine
acts via glutamate receptors but binds rather tightly to glutamine receptors [10]. Therefore,
it has been proposed that theanine modulates the glutamate–glutamine cycle and inhibits
the release of excess excitatory neurotransmitter glutamate [10]. In addition, neurogenesis
in the hippocampus is an important target in stress-induced diseases [11], and theanine has
been reported to upregulate the expression of Slc38a1, one of the glutamine transporter
isoforms, and promote neuronal differentiation and proliferation [12].

On the other hand, neuronal Per-Arnt-Sim (PAS) domain protein 4 (Npas4) is a recently
discovered calcium-dependent transcription factor that regulates the activation of genes
involved in the homeostatic regulation of the excitatory–inhibitory balance within neural
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circuits [13,14]. Npas4 expression is reported to decrease under various stress conditions in
mice and rats [14]. In addition, it has been shown that rats with higher expression of Npas4
in the hippocampus due to stress recover more quickly from stress than those with lower
expression [15]. Higher expression of Npas4 may be important for stress tolerance.

When the effects of territorial confrontation stress were examined in male mice, adrenal
hypertrophy was observed after 24 h and continued for more than a week thereafter [8].
This indicates that the hypothalamus–pituitary–adrenal (HPA) axis was activated by the
stress the mice were experiencing. Although adrenal hypertrophy has been observed in all
strains of male mice examined to date and is a reliable marker of stress, theanine intake has
been shown to suppress such stress-induced adrenal hypertrophy [8,16].

We have also found that different strains of mice differ in their sensitivity to stress. For
example, SAMP10, an accelerated aging model mouse, is vulnerable to stress, whereas ddY,
an outbred mouse that is widely used in Japan, is resistant to stress [17,18]. In SAMP10,
confrontational stress caused early brain atrophy, which accelerated with aging, whereas
in ddY, the stress load caused brain atrophy, but the atrophy subsequently recovered [17].
In addition, SAMP10 showed a shortening of the life span due to stress loading [7], while
ddY showed no change in life span (unpublished data). These results suggest that ddY
is a stress-tolerant strain. However, ddY mice developed brain atrophy during group
rearing, which was suppressed by theanine intake, suggesting that long-term group rearing
is stressful for ddY mice [17].

Based on these studies, we attempted to elucidate why ddY mice, which show stress
tolerance under confrontational stress conditions, become more stressed with age, even un-
der relatively low-stress group housing conditions. In addition, we attempted to elucidate
the targets of theanine’s stress-relieving effects.

2. Results
2.1. Body, Adrenal Glands, Thymus, and Cerebrum Weights

Four-week-old ddY mice were kept for one or six months in one of three different
rearing conditions: group housing of six mice per cage, single housing of one mouse per
cage, and double housing of two mice per cage (Figure 1). For each housing condition,
the mice were given theanine, an amino acid unique to tea leaves that has been shown
to reduce stress, in free drinking water, and were compared to those in the same housing
condition with normal water intake. During dissection, the body, adrenal gland, thymus,
and cerebrum weights were measured.
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months (7 months old) (b). Weight of mice’s adrenal glands in each rearing condition for 1 month 
(2 months old) (c) and 6 months (7 months old) (d). Thymus weight of mice in each rearing condition 
for 1 month (2 months old) (e) and 6 months (7 months old) (f). Cerebrum weight of mice in each 
rearing condition for 1 month (2 months old) (g) and 6 months (7 months old) (h). Each column bar 
represents the mean ± SEM (n = 6) overlaid on scatter plots (* p < 0.05, Tukey’s honestly significant 
difference method). Open columns and white dots are control mice. Closed columns and black dots 
are theanine-ingesting mice. 
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In mice reared alone for one month, significant weight gain was observed, which was
suppressed by theanine intake (Figure 2a). Mice reared for six months (seven months old)
weighed 1.5 times more than those reared for one month (two months old), but there was
no effect of rearing conditions (Figure 2b). No differences in the weight of adrenal glands
were observed between rearing conditions (Figure 2c). However, in seven-month-old mice,
the adrenal glands were significantly enlarged in the group-housed mice compared to
the two-to-a-house mice (Figure 2d). Theanine intake significantly suppressed adrenal
hypertrophy in the group-housed older mice. This indicated that group housing increased
stress in the mice as they aged. Atrophy of the thymus gland was observed in the theanine-
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fed group-housed mice after one month (Figure 2e). The wet weight of the thymus did not
differ in the six-month rearing condition but was considerably lower than the wet weights
in the one-month rearing condition (Figure 2f). The wet weight of the cerebrum was not
affected by the housing conditions, duration of rearing, or theanine intake (Figure 2g,h).
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2.2. Stress-Related Gene Expression in the Hippocampus and Cerebral Cortex

Since the transcription factor REST (repressor element 1 silencing transcription factor)
plays an important role in inhibiting neuronal excitation during aging [19], we examined
the expression of REST in the hippocampus and cerebral cortex. The results showed that
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the expression of REST was increased in the hippocampus of older mice that had been
housed in a group compared to the two-to-a-house mice of the same age (Figure 3). The
difference was similar to the difference in the adrenal weight of control group-reared older
mice. No effect of theanine on the expression of REST was observed. In the cerebral cortex,
its expression was high in young mice housed alone but was suppressed in the older mice.
The expression pattern differed between the hippocampus and cortex.
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Figure 3. The expression of REST in the hippocampus and cerebral cortex under each rearing
condition for 1 month (1 M, 2 months old) and 6 months (6 M, 7 months old) in control mice (open
column) and theanine-ingesting mice (closed column). Each column bar represents the mean ± SEM
(n = 6) overlaid on scatter plots (* p < 0.05, Tukey’s honestly significant difference method).

Next, since neuroinflammation increases with age [20], we examined changes in the
expression of genes involved in inflammation, such as IL-1β and TNFα, in the hippocampus.
The results showed that the expression of IL-1β was increased in the hippocampus of group-
housed older mice compared to the two-to-a-house mice (Figure 4), and theanine intake
did not affect IL-1β expression.
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Figure 4. Changes in the pro-inflammatory gene expression in the hippocampus of mice reared
for 1 month (1 M, 2 months old) and 6 months (6 M, 7 months old) in each housing condition for
the control mice (open column) and the theanine-ingesting mice (closed column). Each column bar
represents the mean ± SEM (n = 6) overlaid on scatter plots (* p < 0.05, Tukey’s honestly significant
difference method).

2.3. Gene Expression Changes in the Hippocampus of Group-Housed Mice at Two Months of Age

To examine the targets of theanine’s stress reduction effects in group housing, a
comprehensive comparison of the genes altered by theanine intake in the hippocampus
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of mice that were group housed for one month was conducted. Since it was necessary to
make a comparison with the older group, the basic younger group was examined. The
main functions whose expressions were significantly decreased or increased by theanine
intake are listed in Table 1. Among the genes belonging to the same function, more had
their expression decreased by theanine intake rather than increased. In particular, there
were 2.5 times more repressed genes in the category of “regulation of transcription, DNA-
templated” than promoted genes. No biological data were available for genes belonging to
“biological process”. A trend towards more downregulation than upregulation was also
observed in other functions.

Table 1. The top 10 functions that were significantly down- or upregulated following theanine ingestion.

Expression Function Genes Contents

Downregulated

Biological process 1623 37,720

Regulation of transcription, DNA-templated 1609 18,613

Positive regulation of transcription from RNA
polymerase II promoter 650 9631

Transcription, DNA-templated 587 12,890

Signal transduction 473 12,057

Transport 465 12,634

Positive regulation of transcription, DNA-templated 387 6212

Cell adhesion 384 3802

Metabolic process 377 10,709

Multicellular organismal development 344 6594

Upregulated

Regulation of transcription, DNA-templated 647 18,613

Transcription, DNA-templated 527 12,890

Positive regulation of transcription from RNA
polymerase II promoter 503 9631

Translation 465 2523

Transport 352 12,634

Metabolic process 335 10,709

Negative regulation of transcription from RNA
polymerase II promoter 234 6790

Protein phosphorylation 232 8086

Multicellular organismal development 229 6594

Phosphorylation 219 5556

Next, the main genes whose expression was significantly decreased or increased by
theanine intake are listed in Table 2. The transthyretin was thought to reflect the difference
in the choroid plexus, which was slightly contaminated when the hippocampus was
sampled [21]. Kcnj13 (potassium inwardly rectifying channel, subfamily J, member 13) has
been reported to be involved in the regulation of cell excitability in the hippocampus via
potassium transport [22]. Npas4 (neuronal PSA domain protein 4) is an important target for
regulating responses to stress and promotes the development of inhibitory GABA synapses
in excitatory pyramidal cells of the hippocampus. It also functions as a transcriptional
enhancer [15]. Fos (FBJ osteosarcoma oncogene), Arc (activity-regulated cytoskeletal-
associated protein), and Egr2 (early growth response 2) are all immediate early genes (IEGs)
and are used as markers of neural activity, including stress responses [23]. It has been
reported that DUSP1 (dual specificity phosphatase 1) is upregulated in the hippocampus
during stress and causes depressive behavior [24]. Nr4a1 (clear receptor subfamily 4, group
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A, member 1) is also commonly used as a marker of stress [25]. On the other hand, the
hemoglobin genes Hbb-b2 (hemoglobin, beta adult minor chain) and Hbb-a2 (hemoglobin
alpha, adult chain 2) are not altered in acute stress, but their expression has been reported to
increase during chronic social stress [26]. Txnip (thioredoxin-interacting protein) increases
in the hippocampus with chronic stress [27].

Table 2. The top 10 genes that were significantly down- or upregulated following theanine ingestion.

Expression Symbol Full Name

Downregulated

Ttr transthyretin
Kcnj13 potassium inwardly rectifying channel, subfamily J, member 13
Npas4 neuronal PAS domain protein 4
Fos FBJ osteosarcoma oncogene
Arc activity regulated cytoskeletal-associated protein
Egr2 early growth response 2
Dusp1 dual specificity phosphatase 1
Nr4a1 nuclear receptor subfamily 4, group A, member 1
Gh growth hormone
Olfr382 olfactory receptor 382

Upregulated

Mela melanoma antigen
Zfp125 zinc finger protein 125
Hbb-b2 hemoglobin, beta adult minor chain
C1qc complement component 1, q subcomponent, C chain
Ly6a lymphocyte antigen 6 complex, locus A
Hba-a2 hemoglobin alpha, adult chain 2
Tpm3-rs7 tropomyosin 3, related sequence 7
Gm8615 glucosamine-6-phosphate deaminase 1 pseudogene
Txnip thioredoxin interacting protein
Edv endogenous sequence related to the Duplan murine retrovirus

2.4. The Effect of Age on Npas4 Gene Expression in the Hippocampus and Cerebral Cortex

We examined how the expression levels of genes that showed significant changes in
expression in Section 2.3 would subsequently change as the mice continued group housing
until they reached the age of seven months. We first focused on Npas4, which has been
found to be one of the important targets of theanine [17], and examined changes in its
expression in the hippocampus and cerebral cortex (Figure 5). In the hippocampus, Npas4
expression was high in older mice raised in two-to-a-house. Thus, it was shown that
increased Npas4 expression was present in older mice even under low-stress conditions. In
group-reared older mice, however, Npas4 expression was not increased. The changes in
Npas4 expression in the hippocampus of older mice were inversely correlated with adrenal
hypertrophy and REST expression levels.

On the other hand, in the cerebral cortex, a significant increase in Npas4 expression
was observed in the younger mice (two months of age) reared alone, but the increase was
suppressed by theanine ingestion as well as in older mice. Npas4 showed differences in
expression in the hippocampus and cerebral cortex in different rearing conditions.

2.5. The Effect of Age on IEG Expression in the Hippocampus

In the hippocampus of younger mice, the expression of IEGs such as Fos, Arc, and
Egr2 was suppressed by theanine intake in young mice, but no change in expression was
observed due to aging or rearing conditions (Figure 6). The expression of Nr4a1 increased
with aging, but no significant changes were observed with rearing conditions (Figure 6).
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2.6. Expression of Glucocorticoid Receptor and DNA Methyltransferase, which Downregulate Npas4

The transcription of Npas4 has been reported to be downregulated via the binding of
agonist-bound glucocorticoid receptor (holo-GR) and DNA methylation [28,29]. Therefore,
the expression of holo-GR was examined in the hippocampus and cerebral cortex. The
results showed that its expression in the hippocampus was significantly higher in group-
reared older mice, and its expression was reduced by theanine intake (Figure 7). In the
cerebral cortex, on the other hand, the expression was upregulated in younger single-
housed mice and older group-fed mice. Theanine ingestion also increased the expression
of holo-GR in older group-reared mice. Among the DNA methyltransferases, Dnmt3a was
significantly upregulated in the hippocampus of older group-fed mice and was suppressed
by theanine ingestion (Figure 8).
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3. Discussion

In control older mice, the degree of adrenal hypertrophy was highest in the group-
reared condition, followed by the solo-reared condition, and was lowest in the two-to-a-
house reared condition. This order is similar to the expression pattern of REST, whereas
Npas4 expression was inversely correlated. REST is closely associated with glutamatergic
innervation and is involved in maintaining the balance between neuronal excitation and
inhibition [30]. Npas4 is an important target for regulating the response to stressors, and
high expression of Npas4 has been reported to be advantageous for stress management [15].
As neural excitability increases with aging [19], suppression of excitability is particularly
important in stress-loaded aging mice. We found that an increase in Npas4 expression
occurred with aging (Figure 6). However, REST has been reported to suppress Npas4
expression [31]. Thus, we further considered the cause of the suppression of Npas4 expres-
sion in the group-fed older mice. We found that holo-GR and Dnmt3a were elevated in the
group-reared older mice. Transient stress has been reported to suppress Npas4 expression
in the brain by the binding of holo-GR to its promoter [28], and the long-term stress load
causes the decreased expression via the DNA methylation of its promoter portion [29].
That is, the upregulation of holo-GR and Dnmt3a may be involved in the decreased Npas4
expression in the hippocampus of the group-housed older mice. Therefore, it is possible
that Npas4 expression was suppressed due to these relationships (Figure 9).
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On the other hand, adrenal hypertrophy was significantly suppressed in aged mice fed
theanine compared to controls, even under group-rearing conditions. Although theanine
intake did not affect the expression of REST, the expression of holo-GR and Dnmt3a was
significantly suppressed. Therefore, these relationships suggest that the repression of Npas4
expression was reversed to some extent, resulting in stress reduction (Figure 9). Although
the increase in Npas4 expression relative to controls was not statistically significant, the
subtle tuning in the regulation of neuronal excitatory/inhibitory balance may be significant.

Since mice are social animals, group housing is regarded as a relatively low-stress
rearing condition; as long as no hurtful aggression is observed in the group, they are
considered to be kept without problems. Group housing methods are widely recommended
when breeding mice for experiments. The ddY mice used in this experiment grew fast,
resulting in a 1.5-fold increase in body weight at seven months compared to two months.
Therefore, the stress of overcrowding may be a factor, but the effects of aging are likely to
be important in group-reared older mice.

In the solo housing condition, Npas4 expression was increased in the cerebral cortex
of younger mice, and no significant adrenal hypertrophy was observed in older mice. This
may suggest that increased expression of Npas4 during stress loading is necessary for the
acquisition of tolerance to stress.
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Acute elevation of glucocorticoids suppresses cytokine production in the brain, but central
catecholamines stimulate the release of IL-1β from microglia [32], which is thought to increase
neuroinflammation in the brain due to stress. It has also been reported that chronic stress
promotes the release of pro-inflammatory cytokines [33], but theanine was suggested not to be
involved in the cytokine-mediated stress response. Decreased Npas4 expression may increase
inflammatory factors [34], but IL-1β may not affect Npas4 expression.

In this study, we were able to elucidate part of the regulatory mechanism of Npas4
expression by theanine in older mice under stressful conditions, but further studies are
needed to elucidate the molecular mechanism of theanine’s stress-reducing effect. It is also
necessary to clarify how the strong binding of theanine to glutamine receptors, which has
been found so far, acts on the regulation of Npas4 expression.

4. Materials and Methods
4.1. Animals

Four-week-old male ddY mice were purchased from Japan SLC Co. Ltd. (Shizuoka,
Japan) and kept in conventional conditions in a temperature- and humidity-controlled
room with a 12–12 h light–dark cycle (light period, 08:00–20:00; temperature, 23 ± 1 ◦C;
relative humidity, 55 ± 5%). Mice were fed a normal diet (CE-2; Clea Co. Ltd., Tokyo,
Japan) and water ad libitum. All experimental protocols were approved by the University
of Shizuoka Laboratory Animal Care Advisory Committee (approval no. 195241) and were
in accordance with the guidelines of the US National Institutes of Health for the care and
use of laboratory animals.

4.2. Experimental Design

For the experiment, 72 mice were prepared and divided into 12 groups. Group-housed
mice were housed with six mice per cage (Figure 1). Mice in single housing were housed
with one per cage. Mice in two-to-a-house were housed with two to a cage. Six groups of
36 mice each consumed theanine (Taiyo Kagaku Co. Ltd., Yokkaichi, Japan) in water at a
concentration of 20 µg/mL from one month of age. These mice drank about 10 mL of water
daily. Another six groups of 36 mice (control) consumed water (Table 3).

Table 3. Experimental groups.

Housing Condition 1 M (2 Months Old) 6 M (7 Months Old)

Group Control (water) Control (water)
Theanine Theanine

Alone
Control (water) Control (water)

Theanine Theanine

Two
Control (water) Control (water)

Theanine Theanine

Theanine doses are based on previous experimental results [16]. Theanine at 5–100 µg/mL
has been found to similarly inhibit adrenal hypertrophy, with 20 µg/mL used in previous
experiments.

4.3. Measurement of DNA Microarray and Principal Component Analysis

The mice housed in groups of 6 for 1 month were fed water containing theanine or
nothing (control). The hippocampus was removed from each mouse and frozen immedi-
ately. Total RNA was obtained from the hippocampus using a purification kit (NucleoSpin®

RNA, 740955, TaKaRa Bio Inc., Shiga, Japan). Biotinylated cRNA was synthesized from
this total RNA using One-Cycle Target Labeling and Control Reagents (Affymetrix, Santa
Clara, CA, USA) and hybridized to Total RNA Mouse Gene 1.0 ST Array (Affymetrix).
Three biological replicates were performed for each group. The raw data were normal-
ized using the SuperNORM data service (Skylight Biotech Inc., Akita, Japan) [35]. The
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significance of theanine ingestion was tested by two-way ANOVA at p < 0.001 [36]. To
compare the effects of theanine intake, principal component analysis (PCA) was performed
on ANOVA-positive genes [37,38].

4.4. Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)

Mice at 2 and 7 months of age who fed water containing theanine (~5 mg/kg) or not
were used for this analysis. Isoflurane was used to anesthetize those mice. The hippocampi
and prefrontal cortex removed from the brain of each mouse were immediately frozen. Total
RNA was isolated from homogenized brain samples using a purification kit (NucleoSpin®

RNA, 740955, TaKaRa Bio Inc, Shiga, Japan) according to the manufacturer’s protocol.
The resulting RNA was processed into cDNA using the PrimeScript® RT Master Mix kit
(RR036A, Takara Bio Inc.). A qRT-PCR analysis was performed using the PowerUp™
SYBR™ Green Master Mix (A25742, Applied Biosystems Japan Ltd., Tokyo, Japan) and
automated sequence detection systems (StepOne, Applied Biosystems Japan Ltd.). Relative
gene expression was measured using the previously validated primers for the REST [39],
IL-1β [40], TNFα [41], Npas4 [42], Fos [43], Arc [44], Egr2 [45], Nr4a1 [25], holo-GR [29], and
Dnmt3a [46] genes (Table 4). Furthermore, cDNA derived from transcripts encoding β-actin
was used as the internal control.

Table 4. Sequence of the primers used in qRT-PCR.

Gene Forward Sequence (5′to3) Reverse Sequence (5′to3) Ref.

β-actin TGACAGGATGCAGAAGGAGA GCTGGAAGGTGGACAGTGAG
REST ATCGGACGCGGGTAGCGAG GGCTGCCAGTTCAGCTTTCG [39]
IL-1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT [40]
TNFα CTGTCTACTGAACTTCGGGGTGAT GGTCTGGGCCATAGAACTGATG [41]
Npas4 AGCATTCCAGGCTCATCTGAA GGCGAAGTAAGTCTTGGTAGGATT [42]
Fos AAGTAGTGCAGCCCGGAGTA CCAGTCAAGAGCATCAGCAA [43]
Arc ACGATCTGGCTTCCTCATTCTGCT AGGTTCCCTCAGCATCTCTGCTTT [44]
Egr2 CTACCCGGTGGAAGACCTC AATGTTGATCATGCCATCTCC [45]
Nr4a1 CTGCCTTCCTGGAACTCTTCA CGGGTTTAGATCGGTATGCC [25]
holo-GR GATGGGGAATGACTTGGGCT TTGGGATTCTCTGGACGGCT [29]
Dnmt3a CTGGTGATTGGAGGCAGTCCATGCA TAGCTGAGGCTGTCTGCATCGGACA [46]

4.5. Statistical Analysis

Statistical analysis for cognitive activity was performed using a one-way ANOVA.
Confidence intervals and significant differences in means were estimated by using Tukey’s
honestly significant difference method and Fisher’s exact probability test.

5. Conclusions

In control group-housed older mice, increased expression of the REST and Npas4 down-
regulators, holo-GR and Dnmt3, led to a repressed state of Npas4 transcription. Theanine
suppressed holo-GR and Dnmt3, resulting in a higher expression of Npas4. This may have
fine-tuned the excitation/inhibition balance, resulting in a reduced stress response.
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